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ABSTRACT 

We consider a gauge field theory which admits pdimensional topological 

defects, expanding the equations of motion in powers of the defect thickness. In 

this way we derive an effective action and effective equation of motion for the 

defect in terms of the coordinates of the p-dimensional worldsurface defined by 

the history of the core of the defect. 
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Introduction. 

There has been some interest recently in deriving higher order terms in the action of 

extended objects. For instance, in string theory, Polyakov’ suggested adding an extrinsic 

curvature term to the string action; other authors have investigated particles with extrinsic 

curvature’, however in neither case were physical justifications presented. Following the 

heuristic work of Nielsen and Olesen3 (later proved by Forste#), who argued that the 

behaviour of a vortex solution they had found was that of a Nambu string, other authors 

argued5 that general topological defects had ‘generalised Nambu actions’ 

s EFF = 
I 

xr~,A~v’=Tdp+‘~A. (1) 

where X’(aA) are the spacetime coordinates of the worldsurface, {uA} the intrinsic co- 

ordinates of the worldsurface, and TAB the intrinsic metric. It was hoped that a more 

detailed examination of the equations of motion for the defect would yield the higher order 

terms. To our knowledge, the first step in this direction was the examination of the effec- 

tive action for the Nielsen-Olesen vortex to second order in the ratio of the string width 

to string curvatures. A later study’ of the problem showed that the original reasoning 

had been flawed, and that in fact there were no such correction terms. The purpose of 

this paper is to present a general argument for obtaining an expansion for the effective 

action of bosonic topological defects, and in particular to demonstrate that for strings and 

particles no such terms exist. 

First of all, we should examine what is meant by an “effective action”. Generally, 

topological defects can arise in field theories when the vacuum manifold of the theory is 

non-trivial. Specifically, a p-dimensional+ topological defect can form if I&,-z(M) # 1 

(where n is the dimension of spacetime). Such a defect is characterised by a winding 

number, which is the winding number of the map from a (n-p-2)-sphere surrounding the 

defect into the vacuum manifold. The static defect is a topologically stable solution to the 

equations of motion of the theory, and is characterised by having translational symmetry 

in a (p + 1)-hyperplane, the fields depending only on the m = (n - p - 1) orthogonal 

directions. Unless the symmetry is a global one, the energy density of the defect will be 

highly localised around a particular hyperplane with characteristic thickness E, where c-l 

is typically of the order of the symmetry breaking scale (multiplied by the root of the self 

coupling constant). Clearly, c is extremely small, so the question naturally arises as to 

whether we can approximate the motion of a general topological defect by some simple set 

+ where p refers to the number of spatial dimensions of the defect 
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of equations for a (p+ l)-dimensional hypersurface. Therefore, we somehow want to find a 

way of integrating out the rapid variation of the fields perpendicular to the worldsurface, 

thus reducing the n-dimensional field theoretic action to a (p+l)-dimensional worldsurface 

action. This is the problem of finding an effective action. 

There are essentially two approaches one could take to calculate the action. Either 

one expands the n-dimensional action around a known field configuration, integrating out 

over orthogonal directions, or, one can expand the fields and field equations in powers of 

L thickness of the defect, using integrability conditions for the nrh order terms to give the 

effective equations of motion to order n-l. Clearly the latter method is more dependable, 

although more involved. The former method requires greater care for consistency. We will 

use both methods, mainly the former to obtain the shape of the action, and the latter to 

confirm the equations of motion. We start by setting up our notation and conventions 

before systematically expanding the action around a ‘known’ static solution. Finally, we 

derive the effective action and equations of motion for the defect up to second order in the 

ratio of the defect size to the extrinsic curvature of its world history. 

The effective action. 

Let us suppose that a p-dimensional topological defect is formed during the sponta- 

neous symmetry breakdown of a local field theory with initial symmetry group 9. We will 

consider only a local theory, since only a local theory has the sharp fall off in the fields 

that is required by our methods. Global theories have long range Goldstone boson fields 

which complicate the integration off the worldsurface. (For simplicity we will take g to 

be a simple Lie group, although the more general case should be transparent.) We write 

d(= 4p) to represent the multiplet of fields transforming under G, and A, = &,,(z)TzO 

as the gauge field; thus 

VP4 = V,$ + igAp 

Fpy = V,A - VA, + ig[A,, A”], 

and we take our Lagrangian to be of the form: 

L = (V“4)‘V,4 - ~TrF,,,P” - V(dtd); (2) 

we have taken the signature of the metric to be (+ - -...). The equations of motion are 

6.5 
j-g = -V,V’~ - l#w($b’~) = 0 

6.9 
- = l&F:’ - 
6A., 

ig~‘T.23”~ + h.c. = 0. 
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We will write the solution for the static defect as {q+~,Ao~} which will depend only on 

{zi}, the carte&n coordinates perpendicular to the (p + l)-hyperplane of the defect. 

~,iVD,i40 + ~oV’(~~~o) = 0 

‘D,iF,,ij + ig${T~z),j$o + h.c. = 0. 
(4) 

The first step in finding the effective action is to show that ($0, Aor} are the solutions 

to the equations of motion to zeroth order in the thickness of the defect. In order to 

do this, we need to set up a coordinate system that is tailored to the problem at hand. 

Clearly, given a (p + l)-dimensional submanifold in spacetime, we can coordinatise it by 

some {oA)A,s,...p. The worldsurface is then given by X”(oA), and the induced metric of 

this surface by 
axpax, 

TAB = &,A &B ’ (5) 

At each point on the world history, there exists an m-dimensional normal plane which 

is spanned by m normals, {nr(aA)}i=i,,,,i we choose Cartesian coordinates {t’} on each 

normal plane to correspond with the nf. We then specify that the uA remain constant 

in these normal planes to give us a set of coordinates based on the worldsurface. These 

coordinates will be well defined within the extrinsic curvatures of the worldsurface. Note j 

that in terms of the new coordinates, the metric is no longer constant, and the connection 

no longer vanishes. In particular, an important identity, which relates the Lie derivative of 

the metric to the extrinsic curvature and normal fundamental form of the worldsurfaces is 

‘kbv = 2V(,s,,) = 2K,,, + 2&nj+ 

This is crucial in the expansion of the action - we are not only expanding around a zeroth 

order field configuration, but around a zeroth order metric. 

Now that we have a suitable coordinate system, to examine the zero-thickness limit 

we rescale our variables by a factor of l/e. e here is taken to be a representative thickness 

- a gauge defect in general will have more than one thickness scale associated with it: 

the thickness of the scalar core, and the thickness of the gauge core. We state that the 

ratio between these scales remans fixed as c -+ 0. Thus, we set x’ = c/e, and induce a 

corresponding resealing of the A; gauge fields. The metric and connection on the other hand 

remain unchanged, since we are changing variables rather than coordinates. Thus we see 

that the gauge derivative parallel to the worldsurface, 2) A, as well as the connection terms 

of z)i are now suppressed by a factor of c relative to the Cartesian derivative perpendicular 

to the worldsurface ‘DD,i. Therefore in the limit c + 0, the equations reduce to the static 
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equations (4), and the zeroth order solution is ~$0, Aolr. (Strictly, we should rescale our 

scalar field 4 so that sll quantities are of order one, and take the zero-thickness limit in 

such a way that the energy of the defect remains constant. Thus, strictly it is the rescsled 

4s that is the seroth order solution, however, since we are integrating out over the defect 

to obtain the action, this factor is irrelevant.) With finite thickness however, 40 and Ao 

need not satisfy the equations of motion, for in this case, the dependency of the metric on 

the orthogonal directions introduces extrinsic curvature terms via 

with a similar expression for V,,F”‘. Therefore (3) and (4) are not necessarily equal to 

first order in c. We therefore expand the action in powers of e. 

The action of a field configuration is 

S = 
J 

L[~,A,]J-gd”z. 

Let us suppose that we have a field configuration which corresponds to a topological 

defect moving arbitrarily, then, provided the curvature of the worldsurface remains small 

compared to its thickness, we expect that the field configuration will be close to the zero- 

thickness limit: 

4 = do + 64 

A, = Ao,, + 6A, 

where 64 and SA, are at least of order c, and to order e satisfy the linear&d perturbation 

equations: 

6S - 
640 + J( sd+;;~~am + Mu bA 6;j64) J--gd"y = 0 mlr 6s - I( PS &a, + U,(y)JA,, 

S&(y) + h.c. + 6AaV(y)SAsV;;;6A., 
> 

fid”y = 0 

(10) 
Here we use the notation -& to indicate a functional derivative evaluated at zeroth order 

only in the fields 4 and A,,. We will write g IO to indicate evaluation completely at zeroth 

order, including the metric. The second order functional derivatives are always evaluated 

in this limit. 
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Thus expanding the action around the zeroth order solution 

S =SbhAo,,g] + J( $G$ + h.c. + $6A., a/J > 
v’=i&“+ +; JJ(-$$vw 

+ @’ scptaq5 =sq5 + 6;;_;5 625 W-L,. + kc. + 6A,,6Ab, 6A,,6Ab, ,/-~J-gd”+d”y 
air > 

we see that the perturbation equations reduce this to the simpler form: 

S =WorAowd + ; J( ES4 + h.c. + s4 ;SAop 
> 

J-god%. (11) 
w 

Now, in order to calculate the second term, we need to know 64 and 6A, to order e, 

i.e. the solutions to (10). Clearly these will somehow depend on the Ki, however, before 

trying to solve (10) we should first investigate the integrability condition. We multiply 

each functional derivative of S in (10) by the derivative of the corresponding field, and 

integrate over z to obtain: 

J ~+o,e + h.c. + $A,.,,- = JJ CPS - 6&6&, 6Ad.,.,+- ov 
+ c;6sm PS PS 

-WPo,o f ~dtg3-+.7 + k,6Aa,6440+v + ~5” 6&&,,,,~ + h.c.) 
WA,, 

Although this expression looks involved, note that from (7), the left hand side is 

J-~~(~~n~‘~,i+o + (no,i4o)‘tio,e + AoajpF,aij) = -6~~~((VokqS,)tVoi~~ + h.c. + ~o~kj~o,ij 
f Aoak~ojFoaij + Aok. o-as, .F ” --g[AokrAoj]aFoaij) 

=- J J--TKi&dP+‘a 03) 

where 

Mit = J (~oi#o)t~ok~o f h.c. + F,jiF,jk d”‘< 

is a positive definite symmetric bilinear form. 

The left hand side can also be rearranged to give 



which vanishes by virtue of the zeroth order equations of motion. Hence 

KiMik = 0 

=+ Ki = 0. (15) 

Thus the integrability condition is Ki = 0, and hence 64, &A, = 0 to this order in C. 

Therefore we come to the possibly surprising conclusion that the action is simply 

S = so[k,,4,,d 06) 

We could have come to the same conclusion by examining the equations of motion associ- 

ated with the zeroth order action S(~,,A,,,g,] - the Nambu action. Writing Xp(uA) for 

the worldsurface spacetime coordinates as before, and Da as the worldsurface covariant 

derivative:, the Nambu equations of motion (see appendix) are merely the wave equation 

DAD~X”(U~) = 0 

* Kin: = 0. 

Thus the Nambu action in fact implies that Ki = 0. This was the flaw in the previous 

argumentss: in expanding the action around a zeroth order solution a fully consistent 

procedure is required, all the conclusions of the zeroth order results must be used at 

higher order. We exhibited both techniques of calculating the perturbation solution in 

order to reinforce confidence in this conclusion. 

We are now left with expanding 

-%4,-%,,d = J d=&&,,-%&‘+‘~d”E 

around the worldsurface. By construction, in the new coordinates gij = 6ij, which is 

independent of the t’, hence L, = Lgo and we need only expand the volume element J-s 

about the worldsurface. 

Therefore we have 

J-s = J-so + C&J-so + i(i(j&OjG + . . . 

but 

t by which we mean the spacetime covariant derivative projected onto the worldsurface, 

$$V,,, rather than (P+l)V. 
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ajKi = qv,v,n; = n;V,V,,n: = -Kf”Kifiu 

implies 

J-s = J--l{1 + E’K; + it’<j(X,Kj - KipKr)}. 

Clearly, upon integration, linear terms will disappear, leaving a contribution to the action 

of 

s = PO J ,&[I - Es2 (P+l)R]dP+16 
(19) 

where ~0 = JLod”‘fi is the energy per unit p-area of the defect, ~1~ = J <iaLodm~/2c2 is 

a constant of order unity, and we have used the Gauss Coda& relations 

T K; - K$,” = .d~+l)a 

to write the action in terms of the Ricci curvature of the worldsurface. 

Clearly then, for p = 0 this ‘geometric’ correction term vanishes; for p = 1, it is a 

topological constant, the Euler characteristic of the surface. Only for p 1 2 does this term 

contribute. In this case, one can use the substitution 

DADBX’ = nfKi~e (21) 

in (19) to find the equations of motion for the worldsurface by varying Xfi (remembering 

that the metric TAB and the connection depend on Xfi). From the appendix, we see 

K. = -$!.K4 KB, Kq 2. 
PO 

08B O>C O,A (22) 

as the second order equations of motion for the worldsurface. (In fact, the right hand side 

of these equations vanishes identically for p = 0 and 1, so we could say these were the 

equations for all p.) 

Conclusions. 

Therefore, we have shown that the second order action for a topological defect is (19): 

s = I.4 J J-r[l - Et’ (P+lk]dP+lgA 

which yields the second order equation of motion: 

Ki = -2$~K,pBKjBcKfA 
PO 

a 



Therefore for p = 0,l we see that there are no second order correction terms to the 

action. The action for a particle is the proper length of the path, and for a string, the 

proper area. This might indicate a necessity for a higher order expansion, however, for 

such higher order terms to be important, the extrinsic curvature must be of the order of 

the defect size, in which case, all correction terms would be important, and we might as 

well analyse the full field equations. Such a situation would arise for instance at a cusp in 

a string trajectory. 

For membranes and higher dimensional defects, the effect of (19) can be estimated by 

considering the subsequent motion of a p-sphere of defect released from rest. In terms of 

the radius R(r) of the sphere, r the proper time of an observer moving with the defect: 

” 

KpBAK,cBKpAc = 
l&J 

+j$(l+li')t 

Therefore, if R,(r) is the ‘Nambu’ trajectory, satisfying K, = 0, the second order trajec- 

tory, R(T) is given by 

di-2 
(1-c IP)W +~ds=zc2~(p~ -p) R3 

Therefore 0 > h(r) > &(T) - thus the correction has the effect of slightly resisting the 

collapse of the defect when it starts to become significant - this indicates that the correction 

is a rigidity term. Here the approximation breaks down when R N c2j3 (i.e. before the 

spatial radius of curvature reaches c). After this point, a fuIl field theoretic treatment 

would be required to investigate the behaviour of the defect (if indeed it persists as such). 

It would be interesting to include the effects of supersymmetry in this calculation, 

but this would require finding appropriate field theories with static defect solutions that 

spontaneously break the required spacetime (super)symmetries - a somewhat more involved 

taskg. One can take the approach of requiring an effective action to have the relevant 

worldsurface symmetries, (for example see ref. 10) however, this would only give the ‘shape’ 

of the action. This work shows that only by analysing the actual field theory do we get 

information on whether any of the terms in such an expansion are non-zero. 

Another useful extension of the work would be to investigate whether one can include 

gravity, however, the work of Geroch and Traschen” in four dimensions indicates that a 
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consistent zero-thickness limit in the general case may be problematic - and indeed we 

have found this to be the case. 

Finally, we should remark that these results are probably applicable to a wider class 

of so&on solutions. For instance, we found that the action for a skyrmion was simply the 

action of a particle. Therefore, unlike an action with extrinsic curvature, here we cannot 

ascertain whether ‘particles’ are point like or soliton like from the macroscopic motion. 
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Appendix. 

Here we find the equations of motion associated with the action 

s = J fi((ILo + /Al’2 (p+vR)B+‘o. 

We first write this in terms of the worldsurface coordinates by recalling (5) and (21): 

thus 

S = J G(pa + ~IC~[DADBX”D~D~X,, - (DADAXP)2])dP+1c. C-43) 

In varying the action with respect to Xp, we must remember that both the metric 

and the connection depend on Xfi. For the metric we have: 

67-m = sx$&B + X>6&,B. t-43) 

However, we do not need to evaluate 6l$, since this always appears multiplied by a 

single derivative of Xr which is contracted with a double derivative of XJ‘, a quantity 

perpendicular to the worldsurface. Thus 

~[DADBX’D~D~X, - (DaDAX”)‘] = ~[DADBX’D~D~~X, - DaDAX”D~DB6X,, 

+~ACyBD6~~~D~D,yX’D~DCXy] 

t-44) 
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which, upon integration by parts gives a contribution to 6s of 

J fi 2p~e26X,D~(D~X’7?,AB - DBX’D~D~X~DCD~X~) 

= J--r ~~L~~~~X,D~{D~X~D~D~X”D~D~X~}. J 
Here we have used the Riemmann identity: 

DAD~D~LX” = DBDaDAX’ fYZBCDcX” 

and the Gauss-Coda& relation 

GAB =Kc~cK,% -K,&AB 

= DcJD~X’DADBX. - DAD~X”D~DBX, 

to simplify the equations. 

Finally, we note that 

(445) 

(4 

(-47) 

66 = iyAB6y~~ = DAx’D~6x,, WI 

which we may readily integrate by parts to obtain the full variation of the action as 

6s = J fi6Xp [/L~DAD”X’ + /J~c~DA{D~X~[(D,ZJD~X~)~ - (DBD~X’)‘] (A91 
+ ~DBX’D~D~X’D~D~X,}] 

Therefore, the equations of motion are 

DaDAX’ + f$2D~{DAX’[(D~DcXY)2 - (DBD~X’)‘] 

+ ~DBX’D~D~X’D~D~X,) = 0. 

Thus to zeroth order the worldsurface satisfies the wave equation: 

DAD~X’ = 0 0 

* n:K, = 0. 
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Substituting this result into (AlO) we see that to second order X’ satisfies: 

(DADAXp), + 2p1 -c’DBD~X,~D~D~X,‘D~DAX~~ = 0 
PO 

C-412) 

or, rewriting this in terms of the extrinsic curvatures 

c2K,iBKB KC jOC jOA=O. 
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